In this code we have used iris dataset of sklearn library. You can copy the code and execute it in juypter or PyCharm.
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import seaborn as sns
# Load the iris dataset into a pandas DataFrame
iris = load_iris()
data = pd.DataFrame(iris.data, columns=iris.feature_names)
data['target'] = iris.target
# Split the data into independent (X) and dependent (y) variables
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Create the K-nearest neighbors classifier
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
# Create the confusion matrix
cm = confusion_matrix(y_test, y_pred)
print('Confusion Matrix:')
print(cm)
sns.heatmap(cm, annot=True, cmap='Reds', fmt='g')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.title('Confusion matrix')
plt.show()
The output of the above code:
Confusion Matrix:
[[11 0 0]
[ 0 12 1]
[ 0 0 6]]
Advertisement
Advertisement